

PENGEMBANGAN MUTAKHIR

Ref: Ha Yoon Song, David Ball

HAPS

- High Altitude Platforms(HAPs)
- Stratospheric Platforms(SPFs)
- Height 17 ~ 22Km
- from hot-air balloons
- Advantage of
- Satellite Communication System
- Terrestrial Wireless System

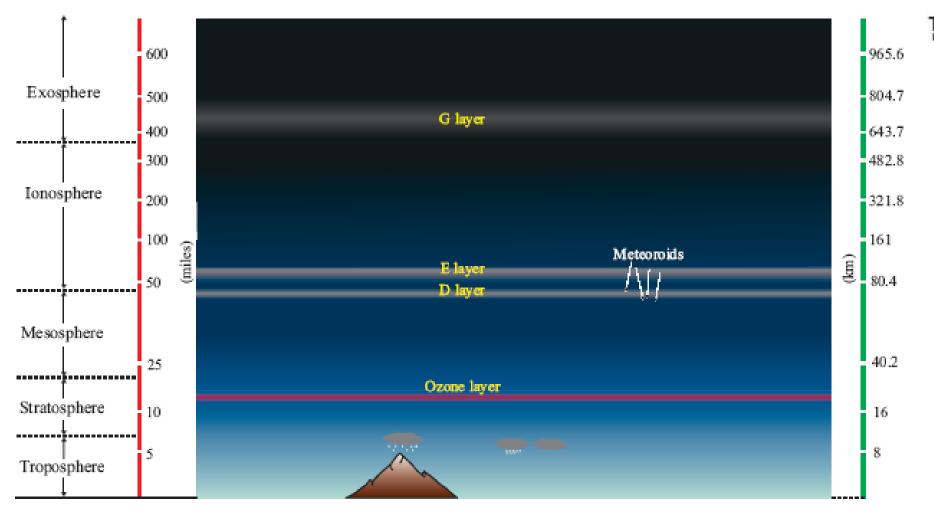


Fig. 1. The Atmosphere Layers

Table I. Basic characteristics of Terrestrial Wireless, Satellite and HAPs systems

Issue	Terrestrial Wireless	Satellite	High Altitude Platform
Availability and cost of mobile terminals	Huge cellular/PCS market drives high volumes resulting in small, low-cost, low-power units	Specialized, more stringent requirements lead to expensive bulky terminals with short battery life	Terrestrial terminals applicable
Propagation delay	Low	Causes noticeable impairment in voice communications in GEO (and MEO to some extend)	Low
Health concerns with radio emissions from handsets	Low-power handsets minimize concerns	High-power handsets due to large path losses (possibly alleviated by careful antenna design)	Power levels like in terrestrial systems (except for large coverage areas)
Communications technology risk	Mature technology and well- established industry	Considerably new technology for LEOs and MEOs; GEOs still lag behind cellular/PCS in volume, cost and performance	Terrestrial wireless technology, supplemented with spot-beam antennas; if widely deployed, opportunities for specialized equipment (scanning beams to follow traffic)
Deployment timing	Deployment can be staged, substantial initial build-out to provide sufficient coverage for commercial service	Service cannot start before the entire system is deployed	One platform and ground support typically enough for initial commercial service
System growth	Cell-splitting to add capacity, requiring system reengineering: easy equipment upgrade/repair	System capacity increased only by adding satellites; hardware upgrade only with replacement of satellites	Capacity increase through spot- beam resizing, and additional platforms; equipment upgrades relatively easy
System complexity due to motion of components	Only user terminals are mobile	Motion of LEOs and MEOs is a major source of complexity, especially when intersatellite links are used	Motion low to moderate (stability characteristics to be proven)
Operational complexity and cost	Well-understood	High for GEOs, and especially LEOs due to continual launches to replace old or failed satellites	Some proposals require frequent landings of platforms (to refuel or to rest pilots)

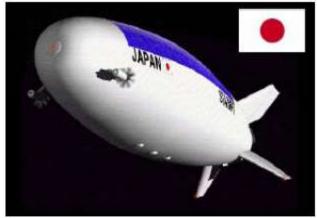
HAPS

- Easy to deploy, incremental deploy
- Flexibility, Reconfigurability
- Low cost of operation (comparing to Satellites)
- Low propagation delay
- High Elevation!
- Wide area coverage
- Broadcast/Multicast
- Mobility!
- BUT, Problems with
- Monitoring of Station
- Airship manufacturing
- Antenna technology

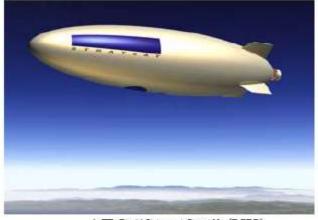
HAPS

- HAPs for 3G + system because of
 - Easy to maintain
 - Easy to deploy
 - Lower path loss

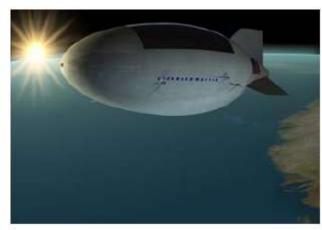
• 4G : Satellite + HAPS = MBMS (Multimedia Broadcast and Multicast Services).


• Stand alone HAPs for low population with large area.

Aerial Vehicles, Key Issues and Spectrum Allocation



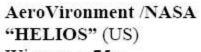
- Three types
- 1) Propulsion + unmanned airships(balloons, aerostats)
- High Altitude Long Endurance Platforms (HALE Platforms)
 Solar-powered unmanned aircraft
- 3) Manned aircraft(???)



NAL "SPF" (Stratospheric PlatForm) (JAPAN)

ATG "StratSat" (UK)

Lockheed Martin NESS (US)



European Space Agency (ESA)

Fig. 2. Solar-powered unmanned Airships

Wingspan: 75m Payload: 50 -100kgr

AeroVironment /NASA "Pathfinder Plus" (US)

Wingspan: 36.9m Payload: 50 kgr

HELINET project Heliplat

(Artist's Impression) (Politecnico di Torino)

Wingspan: 70m Payload: 100kgr

Fig. 3. Solar-powered unmanned Aircraft

FAKULTAS TEKNIK ELEKTRO

Angel Technologies HALO (Proteus 9)
Manned aircraft for the delivery of
communication services

M-55 stratospheric aircraft (Geoscan Network) Piloted aircraft for the delivery of wireless services and remote sensing

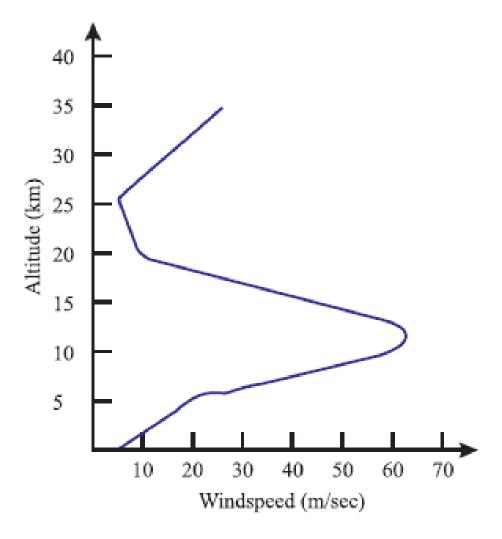
Fig. 4. Manned Aircraft

Table II. A general comparison among Airships, Solar-powered unmanned Aircraft and manned Aircraft

	Airships (unmanned)	Solar-powered unmanned Aircraft	Manned Aircraft
Size	Length 150 ~ 200 m	Wingspan 35 ∼70 m	Length ≈30 m
Total weight	≈ 30 ton	≈ 1 ton	≈ 2.5 ton
Power source	Solar cells (+Fuel	Solar cells (+Fuel cells)	Fossil Fuel
	cells)		
Environmentally	✓	✓	×
friendly			
Response in	*	✓	✓
Emergency situations			
Flight duration	Up to 5 years	Unspecified	4 - 8 hours
		(≈ 6 months)	
Position Keeping	Within 1 km cube	1 - 3 km	≈ 4 km
(radius)			
Mission payload	1000 ~ 2000 kg	50 ~ 300 kg	up to 2000 kg
Power for mission	≈ 10 kW	≈ 3 kW	≈ 40 kW
Example	Japan, Korea, China,	Helios, Pathfinder Plus	HALO (Angel
	ATG, Lockheed	(AeroVironment),	Technologies)
	Martin, SkyStation	Heliplat (European	M-55 (Geoscan
	etc.	project)	Network)

Global Hawk (US) Altitude: 65,000 feet

Speed: 454 mph


Predator (US) Altitude: 25,000 feet

Speed: 135 mph

Fig. 5. Unmanned fuelled Aircraft

FAKULTAS TEKNIK ELEKTRO

Fig. 6. Wind velocity with respect to the altitude (this is a redrawn version of the figure that appeared in [14])

Table V. Current frequency bands allocated for communications via HAPs

Frequency Band	Areas	Direction of the link	Services	Services to be shared with
47.9-48.2 GHz 47.2-47.5 GHz	Global	Up and downlinks	Fixed service	Fixed and mobile services Fixed satellite service (uplink) Radio astronomy band neighbouring
31.0-31.3 GHz	40 countries worldwide (20 countries in Asia, Russia, Africa, etc and in Region 2)	Uplink	Fixed service	Fixed and mobile services Space science service in some areas Space science service band (passive) neighbouring
27.5-28.35 GHz ¹	40 countries worldwide (20 countries in Asia, Russia, Africa, etc and in Region 2)	Downlink	Fixed service	Fixed and mobile services Fixed satellite service (uplink)
1885-1980 MHz 2010-2025 MHz 2110-2170 MHz	Regions 1 and 3	Up and downlinks	IMT-2000	Fixed and mobile services (in particular, terrestrial IMT-2000 and PCS)
1885-1980 MHz 2110-2160 MHz	Region 2	Up and downlinks	IMT-2000	Fixed and mobile services (in particular, terrestrial IMT-2000 and PCS)

Region 1: Europe, Africa, Russia, the Middle East and Mongolia

Region 2: North and south America

Region 3: Asia except for the Middle East, Pacific countries and Iran

Architectures and Services I-Network Design-

- High reliability
- Low power consumption
- Lighter payload

Max 150KM footprint by ITU

- Min. 5 degree of elevation
- Recommended 15+ degree to avoid clutter

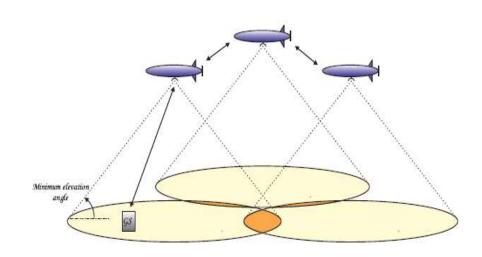


Fig. 8. A General architecture of a HAPs system

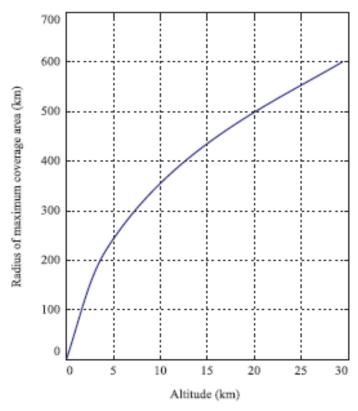


Fig. 9. Radius of the maximum coverage area as a function of the HAP altitude

Architectures and Services(2) - Network Design-

- Frequency Reuse
- Cellular architecture
- High Bandwidth for Broadband application
- Fixed Channel Allocation(FCA)
- Dynamic Channel Allocation(DCA)

•

- HeliNet Network
- CAPANINA

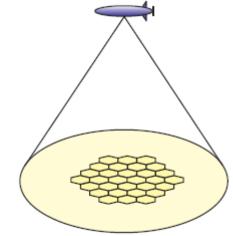


Fig. 10. A Cellular architecture

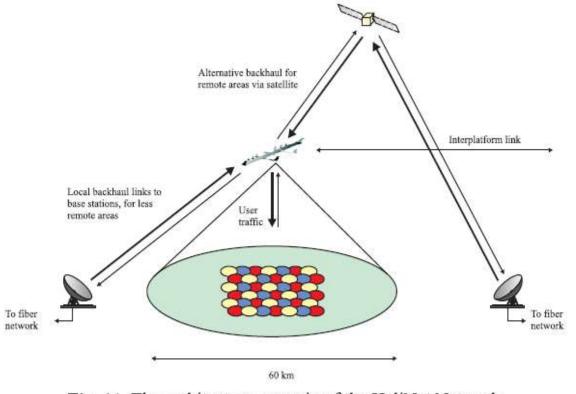


Fig. 11. The architecture scenario of the HeliNet Network

Architectures and Services(3) -Network Design-

- Backhaul links, duplicated
- High traffic for down link
- Asymmetry to uplink
- Multiple uplinks for backhaul station
- Macrocell and microcell architecture (Fig.12)
- Rural macrocell (Fig.13)
- Sectoring. (Fig.14) for system capacity

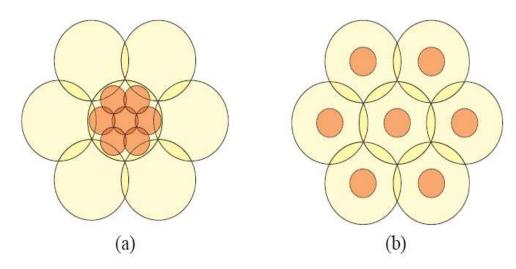


Fig. 12. Cell forming according to traffic

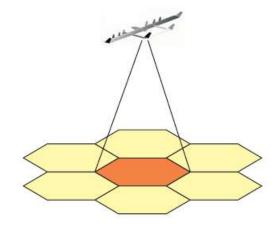
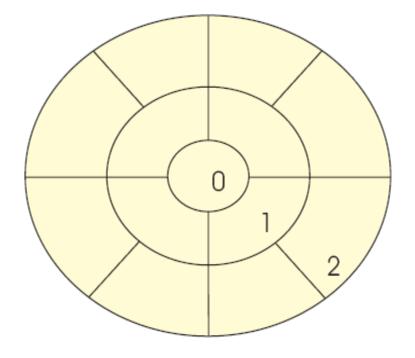



Fig. 13. The aerial cell

Fig. 14. Example of theoretical sectorization pattern with two outer circles

Architectures and Services(5) -Network Design-

- Ring-shaped Cell Clustering (Fig. 15).
- Coaxial Rings
- Multi-beam, controllable antenna
- Simpler handoff design
- Cell scanning (Fig. 16)
- Stratospheric radio-relay Maritime (Fig.17)

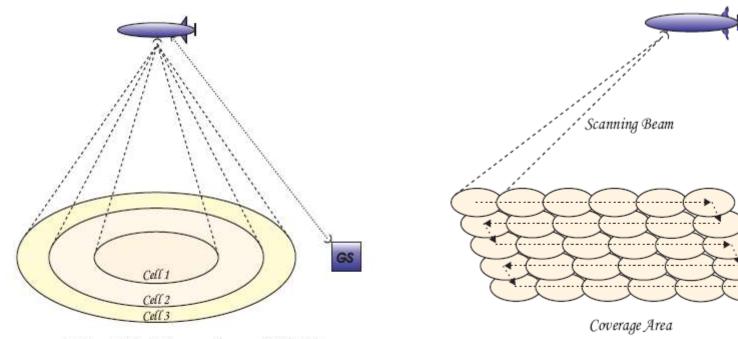


Fig. 15. Ring-shaped Cells

Fig. 16. Cell scanning

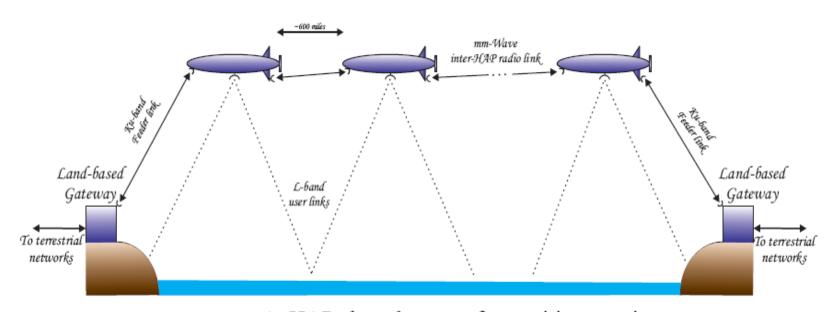
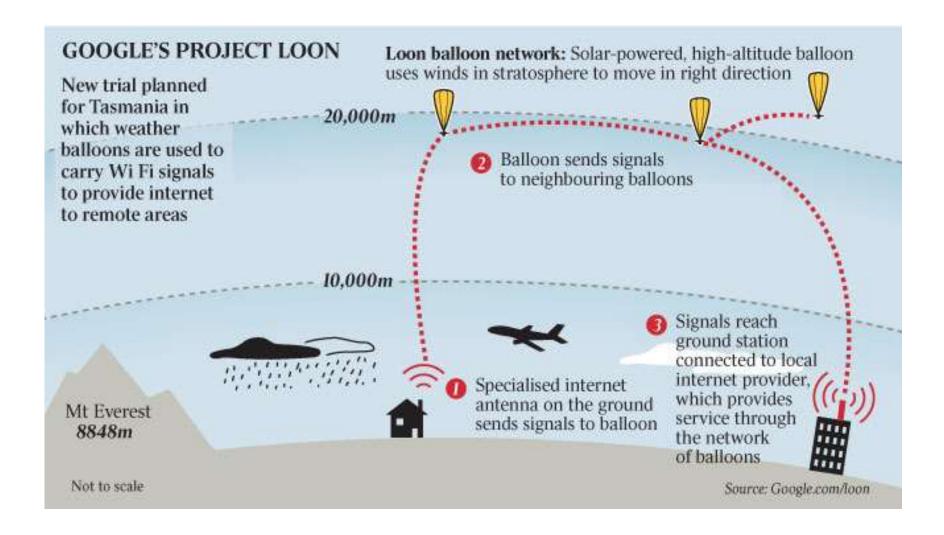


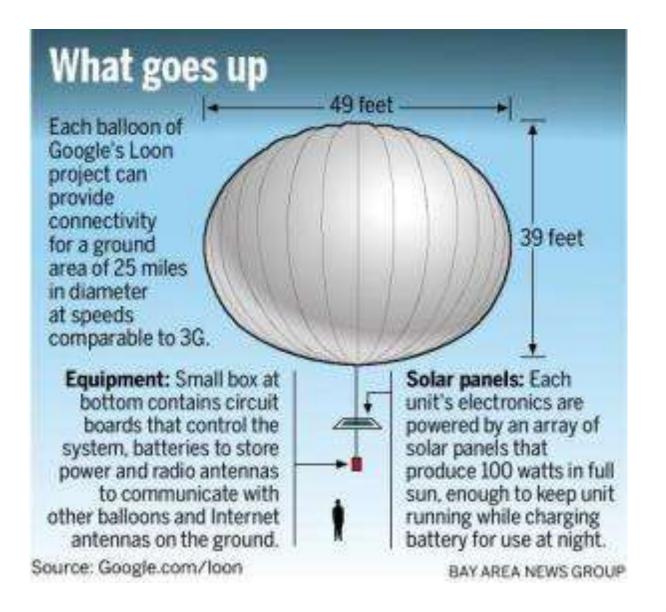
Fig. 17. A HAPs-based system for maritime services

Antennas(1)

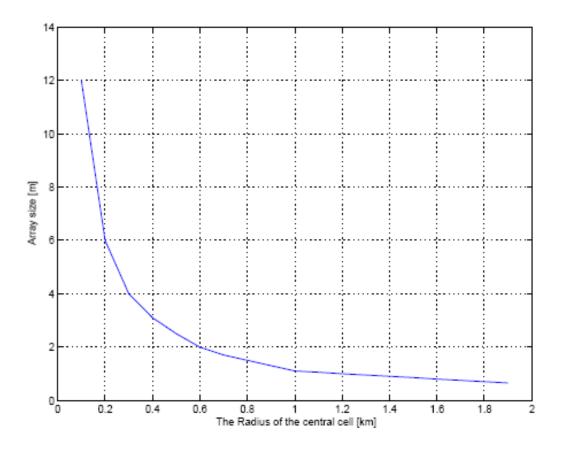

- Requirements
- 1. High frequency for High bandwidth
- 2. High gain, directional antenna
- 3. Multibeam antenna with 100+ beams
- 4. Fig. 34 for footprint
- 5. Beam controllability
- 6. Low payload and low power
- 7. Reliability

Antennas(2)

- Array of the antenna at 2.2Ghz, 21Km height
- Wider array with high altitude, narrower array with high frequency
- Multibeam Horn(MBH)
- Digital Beamforming(DBF)
- Table X Ⅱ



29



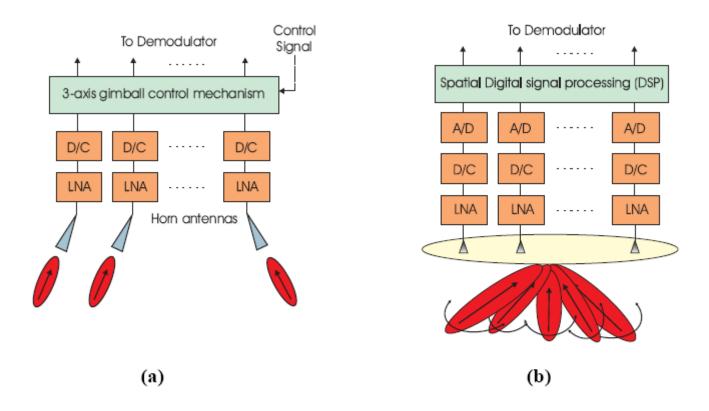

Fig. 34. Typical examples of multibeam footprints proposed in the ITU-R recommendation. (a) Elliptical-beam uniform footprint model (367 beams). (b) Circular-beam Multizone footprint model (397 beams).

Fig. 35. The size of a square array antenna as a function of the radius of the central cell for a HAP operating at 2.2 GHz and at an altitude of 21km (this is a redrawn version of the figure that appeared in [9])

Fig. 36. Basic configuration of prototype multibeam antennas (in case of receiving)

- (a) Multibeam Horn (MBH) antenna
- (b) Digital Beamforming (DBF) antenna (this is a redrawn version of the figure that appeared in [3])

Table XII. Main specifications of the multibeam antenna prototypes (this table appeared in [3])

Telkom University

Item	MBH antenna	DBF antenna	
Frequency band	T _x 47.2-47.5 GHz	T _x 27.5-28.35 GHz	
	R _x 47.9-48.2 GHz	R _x 31.0-31.3 GHz	
Antenna type	7 corrugated horns	16 (4x4) patch array	
Spot beamwidth	12 °	10° ~ 13°	
Number of beams	7 fixed beams	9 fixed beams and 3 tracking	
		beams	
Bandwidth	300 MHz or more	4 MHz	
EIRP	6.3 dBW or more	11 ∼ 15 dBW	
G/T	-15.4 dB/K or more	-13 ~ -17 dB/K	
Compensation for	Position sensor and 3-axis	Adaptive beamforming with	
platform fluctuation	gimbal control mechanism	spatial digital signal processing	
Transmission bit rate	56 Mbps	4 Mbps	
Power consumption	1.0 kW or less	1.6 kW or less	
Weight	150 kg or less	74.2 kg	
Others	Frequency reuse factor: 7 or	Sampling rate: 32 MHz	
	less	Resolution: 12 bits	
	Isolation between co-channel	DSP device: FPGA	
	beams: 30 dB or more	$(R_x: 100 \text{ k gates x 61, } T_x: 100 \text{ k})$	
		gates x 31)	

Fig. 37. Prototypes of multibeam antennas, (a) MBH antenna (R_x) (7 elements, 47/48 GHz Band), (b) DBF antenna (R_x) (16 elements, 28/31 GHz Band) (this photo appeared in [7])

35

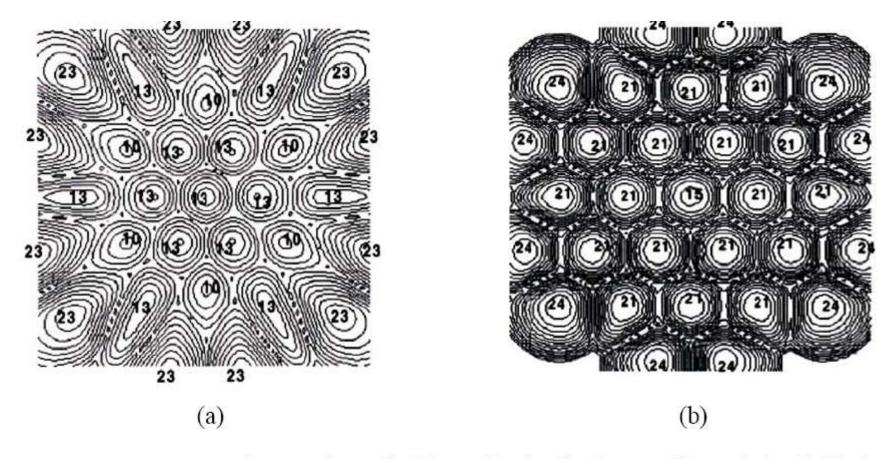


Fig. 38. CIR contours for one channel of four. (a) circular beams, (b) Optimized elliptic beams (this figure appeared in [38])

High Throughput Satellites

Definition

- Multi-spot beam, multiple frequency re-use
- Significantly greater throughput from a given orbital location compared to traditional FSS designs
- HTS satellites are not restricted to Ka band
 - Some of the first HTS satellites operated at Ku band (IPStar)
 - Intelsat EPIC
- GEO HTS
 - Regional
 - Global Constellations
- MEO HTS Constellations
- LEO HTS Constellations

Satellite	Year	Band	Throughput
Various		Ku/C	2 GHz
IPStar	2005	Ku/Ka	45 Gbps
Wildblue-1	2006	Ка	8 Gbps
Spaceway-3	2007	Ка	10 Gbps
Ka-Sat	2010	Ка	90 Gbps
ViaSat-1	2012	Ка	140 Gbps
NBN-1a	2015	Ка	135 Gbps
Viasat-2	2016	Ка	>200 Gbps
Viasat-3	2019 (planned)	Ка	1 Tbps

Closed versus Open Systems

Closed Systems

- Purchase managed service (Mbps)
- Pre-defined standardised service offering
- Asymmetric services are typical
- Remote terminals standardised
- All traffic must flow through operator's gateways
- QoS is pre-defined

Open Systems

- Can purchase MHz
 - Hybrid models also offer managed service options
- Offerings are tailored for specific applications
- Third party gateways are possible
- QoS is determined by network configuration

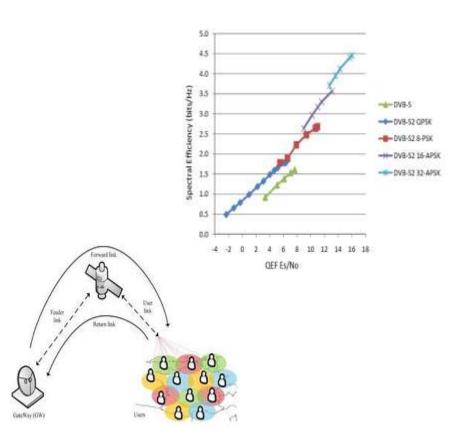
- Closed Systems
 - Fully Integrated Offerings
 - ViaSat
 - Hughesnet
 - Satellite Operator / Vendor Partnership

Inmarsat GX iDirectEutelsat tooway ViaSatYahsat Hughes

• Telesat Vantage 19 Hughes

NBNCo ViaSat

- Open Systems
 - Intelsat Epic
 - IPStar
 - Inmarsat High Capacity Overlay Payload
 - O3b (MEO constellation)



- Changing the metrics of the satellite industry
 - Mbps versus MHz
 - Fill-rate what is the valid measurement?
 - End-to-end solutions
 - Packaged solutions rather than bespoke solutions
- Potential to cannibalise existing FSS revenues
 - ViaSat-3 constellation = 2 x total capacity of existing GEO fleet
- Impact on service providers and teleport operators
 - Defined gateway locations
 - Operator build out of unified network
 - Limited opportunities for third party teleport operators

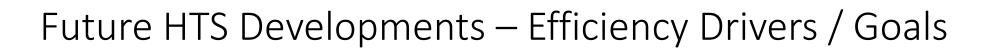
HTS System Design

- Total System Throughput is determined by:
 - Modulation Efficiency
 - Available Bandwidth
 - Frequency Re-use

HTS System Design



- Improving Total System Throughput:
 - Modulation Efficiency
 - Gains are limited by channel non-linearity
 - Available Bandwidth
 - Reduce colour count wider transponder BW
 - Expansion into non-standard bands, new frequency bands
 - Frequency Re-use
 - Narrower beams, increased spotbeam count, increased frequency re-use



- Demand drivers
 - quest for more throughput....the Netflix effect.....
- Fast, cheap, good
 - Pick any two.....

HONLEY

- Increase Overall Throughput
 - Modulation efficiency
 - Use of new frequency bands for feeder links
 - Need to consider spectrum licensing and availability
- Reduce Cost per Bit
 - Space segment cost improve efficiency
 - Gateway efficiency throughput / number of gateways
 - Reduce cost of user equipment / antennas / installation
- Flexible Architecture
 - Respond to changing market demands
 - Increased deployment of processing payloads

Future HTS Developments – Additional Spectrum

- Use additional feeder link spectrum
 - Q band
 - Space-to-earth 37.5 42.5 GHz
 - V band
 - Earth-to-space 47.2-51.4 GHz
 - W band
 - Space-to-earth 71-76 GHz
 - Earth-to-space 81-86 GHz
- Most ITU filings already include Q and V band
 - The race for spectrum has begun early
- Equipment availability limited at this time

Non-GEO Constellations

- Optical Constellation
 - Laser Light
 - MEO constellation, 8 satellites, 6 Tbps throughput
- Recent announcements of LEO HTS systems

COMMstellation 75 satellites

• LEOSat 120-140

• Oneweb 700

• SpaceX 4000

• Samsung 4600

• Xinwei 30

HTS Constellations

 Deployment of LEO HTS networks will represent order of magnitude increase in HTS capacity

• 2013 500 Gbps

• 2023 2500 Gbps

• 2023 with one LEO 8500 Gbps

• 2023 with three LEO 25000 Gbps

Source: Northern Skies Research

48

Antenna: Comms on the Move

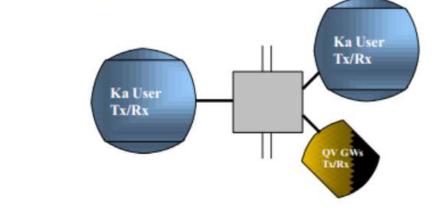
50

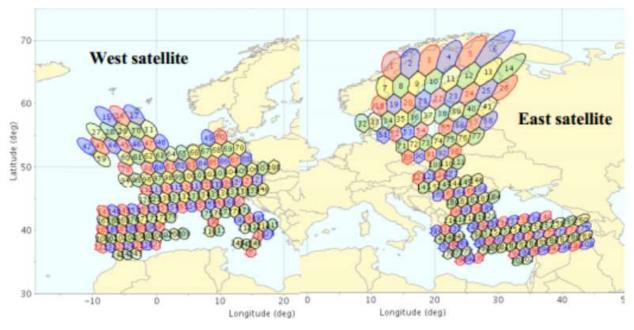
Aeronautical antennas

FAKULTAS TEKNIK ELEKTRO

51

BATS project : an example of HTS System


over Europe (2020)


Telkom University

- Founded by Europe Commision

- 2012 2015
- 15 European Partners

- 300 user beams on EU28 + Turkey with 0.21o beamwidth
- Two satellites
- Each satellite involves 2 Ka-band antennas with 4.8 m reflectors and a Q/V-band antenna with 2 m reflector

BATS project: an example of HTS System over Europe (2020)

- System performance:
 - Throughput (with 2 satellites)
 - Forward link 750 Gbps
 - Return link 250 Gbps
 - Payload supported by evolved NEOSAT satellite platform
 - Mass: 1600 Kg (payload only)
 - Power: 18 KW
 - 25 Gateways per satellite → 50 gateways in the system + redundant sites for diversity

BATS: Broadband Access via integrated Terrestrial and Satellite Systems