

BAB X Mobile Satellite System (MSS)

Mobile Satellite System

- The Mobile Satellite Service use spectrum at frequencies between 1 and 3 GHz, where simple antennas provide flexible access to the space segment.
- It is preferred because of its greater ability to penetrate foliage and nonmetallic structures and bend around obstacles. Frequencies above 3 GHz are easily blocked by natural and manmade obstacles and introduce practical difficulties when it comes to generating transmit power. Above 10 GHz, rain attenuation is too high.
 - The MSS portion of the spectrum is limited to segments of around 50 MHz each due to the following factors:
 - A general lack of bandwidth to begin with, due to the lower frequency as compared to C-, Ku-, and Ka-bands;
 - Competition with land-based services such as cellular telephone, mobile data communications, and a wide variety of unlicensed services such as 802.11 wireless LAN, Wimax;
 - Reduced ability to achieve frequency reuse because user antennas have little or no gain and cannot easily discriminate among satellites within view.

The mobile-to-fixed duplex link, using L band to communicate with the mobile subscriber and Ku-band feeder link to the gateway Earth station.

The mobile subscriber can make and accept calls from the PSTN provided by the space segment; direct user-to-user connections may be possible on a single-hop basis.

Architecture of MSS

Overall architecture of an MSS system, showing the four primary levels: the satellite constellation, the user terminals, gateway Earth stations and control systems, and the terrestrial networks.

Architecture for MSS

- Each of these levels contributes heavily to the functionality and investment of the total system:
 - Satellite constellation, consisting of a quantity of operational satellites that deliver the service over the coverage area. These can employ any of the possible orbit constellation arrangements, with intersatellite links being optional.
 - User terminals of various types: vehicular, handheld, transportable, ship and aircraft, and fixed terminals.
 - Gateway Earth stations that allow traffic to pass between users and the public networks, and to manage the service on a consistent basis. Also considered are TT&C facilities to control and monitor the satellites.
 - Terrestrial networks to address the service needs of the users. These include the PSTN, the Internet, and other networks, both public and private.

- The satellite links design in MSS have many similarities to their counterparts in FSS and BSS. All employ microwave frequencies, experience the standard spreading loss in propagating at the speed of light through free space, and employ conventional low-noise and high-power amplifiers.
- The principal differences are due to limited bandwidth available at L (1-2 GHz) - and S (2-4 GHz) -bands and the dynamic behavior of mobile link fading.

Link Description

For a mobile broad-beam Earth station antenna, signals from satellite B cause unacceptable interference even though it is many degrees away in orbit space. Satellite C is nearly below the horizon and cannot interfere.

Simplified Link Budget for a GEO

Parameter	Forward L	ink	Return Lin	ık	Footnote
	Up	Down	Up	Down	
TDMA carrier bandwidth, kHz	48	48	48	48	
Frequency, GHz	14.25	1.54	1.64	12.45	
Transmit antenna	11m	12m	Helix	2m	(1)
EIRP, total, dBW	72.60	63.00	2.70	42.00	
EIRP, per carrier, dBW	52.60	47.10	2.70	11.40	(2)
Path loss, dB	-207.00	-187.6	-188.1	-205.90	
Other losses	-0.25	-0.10	-0.13	-0.23	(3)
Receive G/T, dB/K	4.00	-23.90	20.00	40.00	
Receive C/T, dBW/K	-150.70	-164.50	-165.50	-154.70	
Noise bandwidth, dB(Hz)	-46.81	-46.81	-46.81	-46.81	
Boltzmann's constant	-228.60	-228.60	-228.60	-228.60	
C/N thermal, dB	31.14	17.29	16.26	27.06	
C/IM, dB	30.00	20.00	30.00	17.00	(4)
C/I, dB	20.00	20.00	23.00	20.00	
C/(N + I + IM) total, dB	19.29	14.13	15.28	14.96	
Combined C/(N + I + IM) (up and down), dB		12.97		12.10	
Required C/(N + I + IM), dB		5.00		5.00	
Margin, dB		7.97		7.10	

Link Budget (Cont..)

- Note: The IF routing repeater on the satellite transfers a 64 Kbps TDMA carrier in a bandwidth of 48 kHz using R = 0.8 turbo coding and QPSK modulation. Since the repeater provides a bent-pipe transmission path, uplink noise must be added to the downlink noise to determine overall C/N for the link.
- (1) Up is from Earth, down is from space.
- (2) 100 carriers in forward link; 4.1-dB compression due to amplifier saturation effects on forward downlink; ~1,000 carriers on return downlink.
- (3) Clear sky: variable propagation margins will be taken at the end of the link.
- (4) These values come from amplification chain characteristics.

Orbit Selection

- The three orbits that are applied to MSS: GEO, MEO (also referred to as intermediate circular orbit), and LEO. As the altitude of the orbit is decreased from GEO, the number of satellites required for continuous coverage increases.
- The inclined geosynchronous orbit (not shown) is applied as well (e.g., Sirus Satellite Radio), since mobile antennas either are broad in beamwidth or have tracking mounts.

Orbit Characteristics

Orbit Definition	Altitude Range (km)	Period (Hours)
LEO	150 to 1,000	1.5 to 1.8
MEO	5,000 to 10,000	3.5 to 6
Geosynchronous orbit (e.g., synchronized to 24-hour rotation of the Earth but generally elliptical in shape; may or may not be inclined with respect to the equator)	36,000 mean altitude	24
GEO	36,000 precisely, in plane of the equator	24
Highly elliptical Earth orbit (HEO)	1,000 to 40,000	12 to 24

Orbit period and one-way (single Telkom hop) time delay versus altitude.

Summary of the Key Attributes of the Key Attributes of the LEO, MEO, and GEO Orbits

LEO	MEO	GEO
20-dB net advantage over GEO; reduced latency favored for voice	Medium altitude is compromise between LEO and GEO; reduced latency relative to GEO	Simplest and lowest in cost to implement and operate; latency an issue in some applications
Large constellation needed	Small constellation or pairing	Single satellite
Limited coverage; favors cross-links	Each satellite covers large landmass or ocean; cross-links of limited value	Each satellite covers a hemisphere; little or no use for cross-links
Nearly three-quarters of satellites over oceans at a given time	Satellite coverage extends across oceans	Satellite coverage extends across oceans and continents

GEO satellites have provided most of the MSS capabilities, in terms of land, sea, and air. The economy and simplicity of a single satellite along with the ability to use fixed antennas on the ground have allowed GEO to reach critical mass for the applications.

- In addition to the global capability of Inmarsat, a number of GEO MSS networks capable of serving handheld satellite telephones are in service.
- The major benefit of the lower orbits is reduced time delay for voice services. This factor is very important in terrestrial telephone networks, particularly with high-quality transmission as provided through fiber optic technology. Time delay is less of a factor in mobile communications.

INMARSAT COVERAGE

1. Inmarsat (Gen.3 and 4)

Year of Adoption	Satellite Series	Service Capabilities
1982	Inmarsat A	Analog telephone (FM-SCPC) and telex
1990	Inmarsat Aero	Aeronautical digital voice and low-speed data
1991	Inmarsat C	Low-speed data, briefcase keyboard terminals
1993	Inmarsat B	ISDN digital voice and data (64 Kbps), suitcase-sized land mobile terminals
1993	Inmarsat M	Compressed digital voice, briefcase terminals
1994	Global paging	Pocket size pagers
1995	Navigational services	Variety of specialized devices
1997	Mini-M	Laptop voice terminals
2003	Regional Broadband Global Area Network (B-GAN)	Palmtop medium data rate modem, ~144 Kbps, Europe, North Africa, the Middle East, and southern Asia
2005	B-GAN	Palmtop medium data rate modem, 144 Kbps, global footprint using Inmarsat 4
2013-14	I-5	downlink up to 50 Mbps uplink up to 5 M

User Terminals for use on the Inmarsat system.

Regional BGAN IP Modem (HNS)

- 1. Integral antenna
- 2. Compass
- 3. SIM card
- 4. Battery
- 5. External power
- 6. USB
- 7. Indicators
- 8. Ethernet

FAKULTAS TEKNIK ELEKTRO

elkom

2. North American and Australian Telkom MSS Systems

- American Mobile Satellite Corporation (AMSC) was first to launch a GEO MSS in North America, using a medium power satellite called MSAT.
- The same MSAT platform was adopted for Canada by Telesat.
- Typical MSAT antenna gain showing six area beams that cover the 50 states, Canada, and Mexico. This arrangement offers limited frequency reuse

Typical MSAT mobile UTs. **Telkom**

Optus B L-band downlink ERP

GEO MSS Systems Serving Handheld Terminals

E.g Thuraya (UAE), ACeS (PSN, Indonesia)

Characteristic	Value	Units or Comments				
Frequency band						
Forward downlink	1,525-1,559	MHz (GEO MSS allocation)				
Forward uplink	13,750-14,400	MHz (GEO MSS feeder link)				
Return link downlink	10,250-10,900	MHz (GEO MSS feeder link)				
Return link uplink	1,610-1,644	MHz (GEO MSS allocation)				
Connectivity	Mobile to gateway	Connection to PSTN				
	Mobile to mobile	Single hop, on demand				
Services provided	Telephone					
	Fax					
	Circuit-switched data	Virtual private network				
	Packet-switched data	Internet access				
Satellite EIRP	72	dBW (aggregate, per beam)				
Satellite G/T	15	dB/K				
Polarization	Circular					
Station-keeping	0.1	Degrees, north/south and east/west; alternatively inclined orbit up to 6°				
Channel capacity	13,750	Channels, mobile to PSTN				
Call setup time	6 FAKULIAS IEKN	Seconds, to domestic PSTN IK ELEKIKU				

The Satellite (Thuraya)

The 12.25-m deployable antenna-for Thuraya.

GEO Mobile Payload with low-level digital beam forming and

mobile-to-mobile channel routing.

Specific Signal Characteristics of Telkom Thuraya' Service

- Transmissions between handheld UTs are made at L-band at 1,626.5 to 1,660.5 MHz through the 12.25-m antenna and the uplink from the gateway Earth station is at C-band at 6,425 to 6,725 MHz.
- The L-band downlink at 1,525 to 1,559 MHz employs 128 active SSPAs at 17W each, while the C-band return downlink at 3,400 to 3,625 MHz employs two 125-W TWTAs.
- The spot beams are created from only 128 individual dipole elements in the feed assembly; these are energized by the processor with appropriate amplitude and phase to produce the desired spots.
- The system reuses spectrum by up to 30 times, based on division of the 34 MHz of L-band downlink bandwidth over a 200 spot beam pattern with a division by 7 to account for adjacent beam isolation.
- Channel bandwidth of 27.7 kHz, capable of supporting a bit rate of 46.8 Kbps;
- Modulation with $\pi/4$ QPSK;
- TDMA within the individual FDMA channels for up to eight multiplexed voice channels;
- Provision of data transmission in increments of 4.3 Kbps up to the carrier maximum of 46.8 Kbps.

Non-GEO MSS Systems

- The polar LEO constellation for Iridium with 66 satellites in six polar orbit, designed to provide true global coverage with provision of intersatellite links.
- Single-frequency L-band in used for user links; intersatellite andgateway links are at Ka-band.

Satelit Iridium

Summary of Key Characteristics of the Iridium System and Satellites

Characteristic	Value or Comments
Orbit altitude	780 km
Geometry	Polar orbits at 86.4° inclination
Number of orbits	6
Satellites per orbit	11
Total number of satellites	66 plus spares
Number of beams per satellite	48 at L-band
User links	1,616–1,626.5 MHz both up and down
Gateway downlinks	19.4–19.6 GHz
Gateway uplinks	29.1–29.3 GHz
Intersatellite links	Ka-band at 23.0–23.4 GHz to adjacent satellites in same plane and adjacent planes (total four ISLs per spacecraft)
Repeater design	Onboard digital processing of packets
Multiple access	TDMA (Time division duplex)
Satellite lifetime	6 to 8 years, subject to available fuel and battery performance
System capacity	72,600 circuits worldwide (effective capacity of 16,700 circuits)
Channel bandwidth	31.5 kHz
Channel data rate	50 Kbps
Modulation	QPSK
Channel coding	K = 7, R = 3/4
BER	10 ^{-s} after decoding
User link margin	16 dB

Teledesic

Constellation

Teledesic Coverage

1	N.		u ner- over	0	N		N	1	Ni		X	element.	20	VIST C DOLAN		2.0HU			Real Provide American Science Provide American		YW.		
lg		3g		5g		7g	1	9g		llg				New!	z Joost Land							AND UE OCL	
XR	2g		4g	×F	бg		8g	7	10g	7-1	12g	24	2f		4f	\mathcal{O}	6f		8f		10f		12f
lh		3h	- mil	5h	951	7h		9h,	NVA 84	11h		lf	A all the	3f	forege.	5f	192	7f		9f		11f	27
1	2h	A ANIMAL C	4h		6h		8h		10h		12h	and a	2e		4e	2	6e		8e		10e		12e
li	7−₹	3i	\mathcal{T}	5i		7i		9i	AHR	111	(TRANS	le	TOF .	3e		Se	.2055	7e	663	9e		lle	13-57
7	2i	TAN	4i		6i		8i		10i		12i	Straph	2d-		4d		6d		8d		10d	tis	12d -
lj	2	3j	3	'5j ^		7j		9j	5-1	llj	A STREET	-1d	C.A.	3d	100	DC.	172	7 d		9d		11d	0-marine
MCH4	2j		4j	\mathcal{G}	Q] .	19 ale	, ^{8j}	14351	10j	EAP POL	12j	and the state	2c	and a second	4c	succession and	60	Contra -	*8c	17-	10c	0	.12c
lk	7	3k		5k "		7k.	- State of the second second	9k		11k	CE 3000	10	The select of	3C	-	30	$\bigcirc \neg$	2 G	\mathcal{Q}^{\perp}	- YC d	JAPA .	110	
	2k	100	4k	C MC	OK -		8k	2	10k	and services	12k"	CHEN C	2b	3L 10	4b	51	OD.	41144 4144 - 11 4144 - 11	8b	OL	106	110	12b
IF	21	31	-	21	61	4	01	_91 	- contra	III.	MyLI	TD :	10'1 - DA	30		20		10	a these	30	in in	110	
1.0	21 • mai.	2.00	41	5m	OF an	7	e Plotin		101	11	121	fur rate	2a	-1-1	4a	5.	oa -	7	ða	0.	10a	112	12a
LIRIBAT	2m	Sm	Am	- In	6m	-m	Sm	9m	10	III	11.	din L din	T ALL A	W . Th	1.	Sim	6x)a	0		1000	IIa	······································
Anna (1)	2111	2.		50		7.0	, mine	2	Tom	12	1211	1x	GOLA .	-3x		5x		78	ox	9x	101	11x	12 Sau
1	2n		41		6n		8n	- yn	100	TI ATLANT	120	X	1		4117	ALL .	6w		Q	· stri	. How		12
12	1	30		50	20	70	marrie .	0.0		110	121	lw	AND THE REAL	3w	~	5w	X	7w	ow	9w	10.	11w	
200	20	X-	40	X	60	XEB	80	20	100		120	X	2.		41		6v	XI	81		101	X	12 WA
10		30		5p		7p	5-1	9n		11p		lv	20	3v		5v		7 v	X	9v	XE	11v	X
X	2p	XA	4p	X to	6р	X	8p		10p		12p		2u		4u		6u		8u		10u		12u
19	400	39		Sq	भेनन	7 q		99	X	119		lu		3u	X	5u		7 u	X	9u		11u.	200 mm
X	2q		4q	- 5	6q		8q	scurficed	10q		12q	外天	2t	27-3	4t	X	бt	冲	8t	XP	10t	X	12t
lr		3r	A	5r	A-R	7r		9r	ies -	lir	XP	(It)	X	3t	XP	5t	XP	7t	X	9t	XA	11t	XX
N.	2r	4	4r	Yt	6r	YE	8r	YA	10r	44	12r	XA	25	ANT. R.C.	4s	XP	65	XA	85	XP	10s	X	12s
Euro	Re-	/	-	/	-	1	0		-		-	15	Y	35	Y	5s	Y	7s	Y	9s	H	10s	4
	10)	16				10					~	/	~	1	~	1	~	/ .	1	/ .	6	/ .

Footprint of Teledesic

Diagram Blok Satelit

Jaringan Teledesic

Туре	Frequency (GHz)	Gain (dBi)	Quantity
Satellite SB REC	30	30	64,000
Satellite SB XTM	20	30	64,000
Satellite GSL REC	30	41	16,000
Satellite GSL XTM	20	41	16,000
Satellite ISL REC	60	48	8,000
Satellite ISL XTM	60	48	8,000
Standard Terminal	30/20	various	2 million
GigaLink Terminal	30/20	various	10,000

SB : Scanning Beam
GSL : Ground Station Link
ISL : Inter Satellite Link
Gigalink : Gateway → Connection to public

Charasteristics of Teledesic

CONST	ELLATION DESCRIPTION					
Number of Satellites	288 Active					
Geometry	12 planes, 24 satellites each					
Orbit	LEO - 1375 km (828 miles) circular, 84.7 deg. inc					
Orbit Period	113.2 minutes					
Coverage	Global					
Initiation of Operations	2003					
PAYLOAD CAPABILITIES						
Types of Services	Broadband Data and Voice					
Uplink Data Rate	16kbps to 2Mbps					
Downlink Data Rate	16kbps to 64Mbps					
On-board processing	Yes					
Mobile uplink frequencies	28.6-29.1 GHz (Ka-Band)					
Mobile downlink frequencies	18.8-19.3 GHz (Ka-Band)					
Multiple access scheme	FDMA/TDMA					
Channels / Satellite	100,000 at 16kbps					

THE END